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Abstract. Soil heterotrophic respiration (RH) is one of the largest and most uncertain components of the terrestrial carbon 

cycle, directly reflecting carbon loss from soil to the atmosphere. However, high variations and uncertainties of RH existing 

in global carbon cycling models require an urgent development of data-derived RH dataset. To fill this knowledge gap, this 20 

study applied Random Forest (RF) algorithm – a machine learning approach, to (1) develop a globally gridded RH dataset and 

(2) investigate its spatial- and temporal-patterns from 1980 to 2016 at the global scale by linking field observations from the 

Global Soil Respiration Database and global environmental drivers – temperature, precipitation, soil water content, etc. Finally, 

a globally gridded RH dataset was developed covering from 1980 to 2016 with a spatial resolution of half degree and a temporal 

resolution of one year. Globally, the average annual RH was 57.2±0.6 Pg C a-1 from 1980 to 2016, with a significantly 25 

increasing trend of 0.036±0.007 Pg C a-2. However, the temporal trend of the carbon loss from RH varied with climate zones 

that RH showed significant increasing trends in boreal and temperate areas, in contrast, such trend was absent in tropical 

regions. Temperature driven RH dominated 39% of global land and was mainly distributed at a high latitude. While the areas 

dominated by precipitation and soil water content were mainly semi-arid and tropical areas, accounting for 36% and 25% of 
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the global land, respectively, suggesting variations in the dominance of environmental controls on the spatial patterns of RH. 30 

The developed globally gridded RH dataset will further aid in understanding of the mechanisms of global soil carbon dynamics, 

serving as a benchmark to constrain global vegetation models. The dataset is publicly available at 

https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 2019a). 

 

1 Introduction 35 

Global soils and surface litter store up to 2- or 3-fold the amount of carbon present in the atmosphere (Trumbore, 2009) and 

therefore, a small change in soil carbon content could have profound effects on atmospheric CO2 and climate change (Köchy 

et al., 2015). Although global carbon flux from soil-to-atmosphere is increasing (Zhao et al., 2017), the degree to which future 

climate change will stimulate soil carbon losses via heterotrophic respiration (RH) remains highly uncertain (Bond-Lamberty 

et al., 2018; Friedlingstein et al., 2014; Trumbore and Czimczik, 2008), particularly in areas with high temperature sensitivity, 40 

rapid changes in precipitation frequency and intensity.  

Soil RH represents carbon loss from the decomposition of litter detritus and soil organic matter by microorganisms, 

accounting for one of the largest components of the terrestrial carbon cycle (Bond-Lamberty et al., 2018). However, RH’s 

feedback to climate variability is poorly understood. RH could affect future climate change via the mineralization of long-

stored soil carbon, offsetting net primary production (NPP) and even converting terrestrial ecosystems from carbon sink to 45 

carbon source (Tremblay et al., 2018). Conversion of the sink/source role depends on how strongly large-scale process affected 

by environmental drivers, e.g. temperature, precipitation and soil organic carbon content (Hursh et al., 2017; Sierra et al., 

2015), or extreme conditions, such as fire, human disturbance and drought (Kurz et al., 2013; Metsaranta et al., 2011). Although 

it is widely recognized that warming enhances CO2 release from soils, the magnitude of release is uncertain due to variations 

in the temperature sensitivity of soil organic matter decomposition (Suseela et al., 2012). Therefore, reducing RH uncertainty 50 

and clarifying the response of RH to environmental factors are essential for future projections of the impact of climate change 

on the terrestrial carbon balance.  

Due to the diurnal, seasonal and annual variability in RH, in addition to the difficulty of large-scale measurements, regional 

and global RH estimations mainly depend on modelling approaches using regional or global variables, such as temperature, 

precipitation and carbon supply (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 2017). However, 55 

to the best of our knowledge, no study has examined global RH variability using numerous empirical measurements that bridge 

the knowledge gap between local, regional and global scales spatially and temporally. In addition to temperature and 

precipitation, soil variables such as water, carbon and nitrogen contents are also important factors in the regulation of RH and 

should be considered for accurate RH estimations (Hursh et al., 2017; Zhao et al., 2017), although these variables vary with 

biome and climate.  60 
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Observational studies have examined the responses of soil respiration to different climatic variables at different locations 

across the globe (Bond-Lamberty and Thomson, 2010a; Zhou et al., 2016). Hashimoto et al. (2015) and Bond-Lamberty and 

Thomson (2010b) predicted global soil respiration rates using climate-derived models driving by temperature and precipitation, 

however, the these models commonly explain less than 50% variations of soil respiration, requiring new techniques, potential 

new numerical/algorithmic methods to better quantification and understanding of large-scale soil carbon flux (Bond-Lamberty, 65 

2018). To improve the modelling accuracy, more recent studies have used linear regression or machine learning approaches 

including more abiotic or biotic variables, such as soil carbon supply, soil properties and NPP (Hursh et al., 2017; Zhao et al., 

2017) and observations collected from newly published measurements (Jian et al., 2018; Zhao et al., 2017). On the other hand, 

including more variables in linear or non-linear regression models may cause overfitting and autocorrelation issues (Long and 

Scott, 2006). To overcome overfitting and autocorrelation, machine learning approaches, such as the Random Forest (RF, 70 

Breiman, 2001), have been applied to explore the hierarchical importance of environmental factors, such as temperature, soil 

water content (SWC), NPP and soil pH (Hursh et al., 2017). Machine learning techniques are highly effective as they are fully 

data adaptive, and do not require initial assumptions on functional relationships and can function with nonlinear dependencies 

(Bodesheim et al., 2018). Therefore, these approaches have been widely used in earth science, particularly in carbon and water 

flux modelling (Jung et al., 2010; Jung et al., 2017; Yao et al., 2018b), and may provide more reliable estimates of soil 75 

respiration (Bond-Lamberty, 2018; Zhao et al., 2017). However, no study to date has assessed the global variability of RH 

using empirically field observations to bridge the knowledge gap between local, regional and global scales.  

The newly-emerged Dynamic Global Vegetation Model from the TRENDY model ensembles and Earth System Models 

have been widely used to investigate major physiological and ecological processes and ecosystem structures, providing a novel 

database and approach to examine and estimate RH at the global scale (Zhu et al., 2017). TRENDY and Earth System Model 80 

simulations incorporating RH component are commonly calibrated and validated by eddy covariance measurements, e.g. net 

ecosystem carbon exchange (Yang et al., 2013), however, modelled RHs from these models have not yet been calibrated and 

validated using field RH observations. Therefore, these modelled RHs may be fundamentally different from observed values 

and no global observations exist to evaluate model effectiveness.  

Thus, we used RF to estimate global RH based on updated RH observations from the Global Soil Respiration Dataset  85 

(SRDB, Bond-Lamberty and Thomson, 2010a) with the objectives of: (1) developing a globally gridded RH product (named 

data-derived RH); (2) detecting the temporal and spatial and temporal patterns of RH; (3) identifying the dominant driving 

factors for spatial- and temporal-variabilities of RHs; and (4) comparing data-derived RH dataset with data generated by 

Dynamic Global Vegetation Models from the TRENDY ensembles. Consequently, the developed global RH database could 

improve our understanding the underlying mechanisms of RH variability to future climate change at the global scale, and could 90 

serve as a benchmark to constrain global vegetation models. 

2 Materials and methods 
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2.1 Soil heterotrophic respiration database development 

The basis of the database developed here included observed global RH values from SRDB (Bond-Lamberty and Thomson, 

2010a),  which was obtained  at https://github.com/bpbond/srdb. The database was further updated using observations collected 95 

from Chinese peer-review publications at the China Knowledge Resource Integrated Database (www.cnki.net) until March 

2018. This study included the RH data for: (1) annual RH as directly reported in publications with at least one year continuous 

measurements; (2) the start- and end-year were extracted from SRDB, directly from publications or calculated by the “years 

of data” in the SRDB; (3) observations measured by alkali absorption or soda lime approaches were not included because of 

their potential underestimation of respiration flux with increasing pressure in the measurement chamber (Pumpanen et al., 100 

2004); (4) experiments with treatments, such as nitrogen manipulation, or fertilization, were excluded, and only RH 

measurements from the control treatment were included (Jian et al., 2018); (5) SRDB observations labelled as “potential 

problem” (“Q10”), “suspected problem” (“Q11”), “known problem” (“Q12”), “duplicate” (“Q13”) and “inconsistency” 

(“Q14”) were not included (Bond-Lamberty and Thomson, 2010a). Finally, the newly updated dataset included 504 

observations in total. Although most of the observations were from China, America and Europe, this database cover all the 105 

major terrestrial biomes across the world (Fig. 1). 

2.2 Climate and soil data 

To investigate the global spatial-temporal RH patterns, global spatial-temporal grids of RH driving factors were required. 

A total of 9 variables were included (Supplementary Table S1): Monthly gridded data of temperature, precipitation, diurnal 

temperature range from Climatic Research Unit TS v.4.01 over 1901-2016 (https://crudata.uea.ac.uk, Harris et al., 2014); 110 

shortwave radiation (SWR, https://www.esrl.noaa.gov, Kalnay et al., 1996); gridded soil organic carbon content (Hengl et al., 

2017)and nitrogen content from https://webmap.ornl.gov/ogc/index.jsp (Global Soil Data, 2000); monthly gridded nitrogen 

deposition dataset from the global Earth System Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3 from 1850 to 2000s  

(https://www.isimip.org, Lamarque et al., 2013); monthly Palmer Drought Severity Index  (PDSI, 

https://www.esrl.noaa.gov/psd/, Dai et al., 2004) and  (SWC, https://www.esrl.noaa.gov, van den Dool et al., 2003). Before 115 

further data analysis, monthly data were aggregated to an annual scale. These variables could stand for different environmental 

controls on RH. For example, temperature, precipitation and SWC are critical environmental controls on microbial activities 

for soil organic carbon decomposition (Jian et al., 2018; Suseela et al., 2012; Tremblay et al., 2018). Soil organic matter, soil 

carbon stock and soil nitrogen are important carbon and nitrogen substrates for microbes that are related to the decomposition 

of soil organic matter (Tremblay et al., 2018). The drought index (PDSI) and diurnal temperature range to represent water and 120 

temperature stress on RH (Berryman et al., 2015; Zhu and Cheng, 2011). The global environmental drivers for each given site 

were extracted by site longitudes and latitudes corresponding to annual RH observations. If the environmental driver is not in 

a spatial resolution of 0.5o, we first re-sampled this environmental driver to 0.5o resolution using a bilinear interpolation.  

2.3 RH from TRENDY models 
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In the last several decades, TRENDY models were developed to simulate key processes (e.g. photosynthesis, respiration, 125 

evapotranspiration, phenology and carbon allocation) that drive the dynamics of global terrestrial ecosystems (Piao et al., 

2015). TRENDY models follow a common protocol and use the same climate-forcing data from National Centres for 

Environmental Prediction at a spatial resolution of 0.5°. For model products with different spatial resolutions, new errors will 

be produced when re-sampling to 0.5°. Therefore, to compare the dynamics in data-derived RH dataset and TRENDY RH 

dataset, we used model outputs from seven TRENDY models (Community Land Model-4.5 (CLM4, Lawrence et al., 2011); 130 

Integrated Science Assessment Model (ISAM, Cao, 2005); Lund-Potsdam-Jena (LPJ, Sitch et al., 2003); Lund-Potsdam-Jena 

General Ecosystem Simulator (LPJ-GUESS, Smith et al., 2001); VEgetation-Global-Atmosphere-Soil (VEGAS, Zeng et al., 

2005); and Vegetation Integrative Simulator for Trace gases (VISIT, Kato et al., 2013). Additionally, RH data generated 

empirically by Hashimoto et al. (2015) was compared, which was downloaded from the publicly available dataset 

(http://cse.ffpri.affrc.go.jp/shojih/data/index.html) and estimated using empirical total soil respiration relationships using a 135 

climate-driven model (termed as Hashimoto RH) based on the observation from SRDB. More details can be found in 

Hashimoto et al. (2015).  

2.4 RF-based RH Modelling 

RF is a machine learning approach that uses a large number of ensemble regression trees, but a random selection of predictive 

variables (Breiman, 2001). Two free parameter settings are required, which are the number of trees and candidate variables 140 

for each split. However, RF model is not usually sensitive to the number of trees or variables. RF regression can deal with a 

large number of features, assisting feature selection based on importance value of each variable and the avoidance of overfitting 

(Bodesheim et al., 2018; Jian et al., 2018). In the present study, RF model was trained using 9 variables(supplementary Table 

1) in the “caret” package in R (R Core Team, 2018), which was then implemented to predict RH for each grid at a spatial 

resolution of 0.5°. To characterize the performance of RF, a 10-fold cross-validation was applied, which means that the dataset 145 

was stratified into 10 parts and each part contained roughly equal number of samples. The target values for each of these 10 

parts were predicted based on training model using the remaining nine parts. Two model evaluation statistics were used, 

modelling efficiency and root mean square error  (RMSE, Tang et al., 2019b; Yao et al., 2018b).  

2.5 Trend analysis 

Trend analysis of RH were estimated by Theil-Sen linear regression and tested with the Mann-Kendall non-parametric test. 150 

The Theil-Sen estimator is a non-parametric slope estimator based on median values, and this approach was widely used for 

spatial analysis, such as time-series carbon flux (Dai et al., 2016) and vegetation greening and browning (Pan et al., 2018) . 

The Mann-Kendall non-parametric test was employed to investigate the significant changes in RH trend. The significance 

level was at 0.05.  

2.6 Relationships between RH and temperature, precipitation and SWC 155 
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Although previous studies have used precipitation as a proxy for SWC (Bond-Lamberty and Thomson, 2010b; Chen et al., 

2010), this may result in variability in soil respiration estimates (Jassal et al., 2007; Zhang et al., 2006), because the relationship 

between SWC and soil respiration is much more complex than that between soil respiration and temperature or precipitation 

(Jian et al., 2018). Therefore, the mean annual temperature (MAT), precipitation (MAP) and SWC were all considered as 

potentially important proxies driving RH (Bond‐Lamberty et al., 2016; Reichstein and Beer, 2008). Annual mean RH was 160 

regressed against the three proxies. The relationships between data-derived RH and temperature/precipitation/SWC were 

assessed locally for each grid cell, by calculating the correlations using partial correlation analysis. When analysing the partial 

correlations between RH and the proxy, the other two proxies were controlled. The correlation strengths of temperature, 

precipitation and SWC were used to derive RGB combinations and indicate the drivers of RH.  

2.7 The comparison map profile method 165 

To detect the spatial similarity and difference patterns between data-derived RH and TRENDY or reported RH values from 

1981 to 2010, we utilized the comparison map profile (CMP) method (Gaucherel et al., 2008). This method was based on the 

absolute distances (D) and cross-correlation coefficients (CC) across multiple scales, with D and CC reflecting the similarity 

and the spatial structures of two compared images with the same sizes, respectively (Gaucherel et al., 2008). The D value 

between moving windows (from 3 × 3 to 41 × 41 pixels in present study) of two compared images were calculated by Eq (1):  170 

D = abs(𝑥̅ − 𝑦̅)       (1) 

Where, 𝑥 ̅and 𝑦̅ represent mean values calculated over two moving windows. Finally, the mean D value was calculated as an 

average of different moving windows. 

The CC was calculated according to Eq (2):  

CC =
1

𝑁2
∑ ∑

(𝑥𝑖𝑗−𝑥̅)×(𝑦𝑖𝑗−𝑦̅)

𝜎𝑥×𝜎𝑦

𝑁
𝑗=1

𝑁
𝑖=1      (2) 175 

𝜎𝑥
2 =

1

𝑁2−1
∑ ∑ (𝑥𝑖𝑗 − 𝑥̅)𝑁

𝑗=1
𝑁
𝑖=1      (3) 

Where, xij and yij are pixel values at ith row and jth column of the moving windows of two compared images, respectively; N 

represents the total number of pixels covered by each of moving windows; σx and σy stand for standard deviations of two 

moving windows. Low D values reflect goodness between the compared images, while low CC values suggest low similarity. 

Finally, the mean D and CC were calculated as the averages from different moving windows.  180 

3 Results 

3.1 Spatial patterns of RH 
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Based on the 10-fold cross-validation, model efficiency (R2) and RMSE, were 50% and 143 g C g C m-2 a-1 (Fig. S1), 

respectively. This indicates that the RF algorithm effectively captured the spatial- and temporal-variability of RH, therefore 

enabling deriving of a global gridded RH dataset. 185 

Data-derived RH dataset showed a strong spatial pattern globally (Fig. 2a). The largest RH fluxes occurred in tropical areas 

(e.g. Amazon tropical forest) at > 700 g C m-2 a-1, followed by the subtropics, such as South China and America, and humid 

temperate areas, e.g. North America, Western and Central Europe, with an annual RH of 400-600 g C m-2 a-1. Relatively low 

annual RH less than 200 g C m-2 a-1 was generally observed in areas with cold and dry climates, such as boreal areas, 

characterized by low temperatures and short growing seasons, dry or semi-arid regions (e.g. Northwest China), where water 190 

availability limits ecosystem development. However, the most variable changes in RH - using standard deviation as a proxy 

(Fig. 2b), were found in boreal regions with more than 70 g C m-2 a-1, while the majority areas of RH variability exhibited 

smaller than 30 g C m-2 a-1. Similarly, TRENDY and previously reported RH values showed similar patterns with the highest 

RH in warm and humid areas and lowest RH in cold and dry regions (Fig. S2). However, differences existed in the absolute 

RH fluxes (Fig. S2). For example, CLM4 and VISIT models predicted RH to be more than 1400 g C m-2 a-1 within Amazon 195 

forest regions, while ISAM and LPJ-GUESS estimates were typically low at around 1000 g C m-2 a-1. However, data-derived 

RH dataset and Hashimoto RH showed highest RH fluxes in tropical regions of less than 800 g C m-2 a-1. 

To examine the similarity in patterns of data-derived RH dataset and those established by TRENDY models and Hashimoto 

RH, CMP method was employed (Fig. 3). Larger D and lower CC values indicate less consistent magnitudes and a local 

gradient distribution between the two compared images. Data-derived RH dataset and Hashimoto RH differed greatly in East 200 

Canada and the Middle East with D values above 200 g C m-2 a-1 and CC values lower than -0.5. Interestingly, the most 

noticeable differences between the data-derived RH values and TRENDY model mean RH values, occurred in East Asia and 

the Middle East, where D was higher than 500 g C m-2 a-1, while CC was around -0.1. When assessing each TRENDY model 

individually (Figs. S3 and S4), the differences between data-derived RH dataset and TRENDY RH were even larger. The most 

remarkable difference was found for CLM4 and VISIT models in regions where D was above 800 g C m-2 a-1 with CC values 205 

of about -0.3 (East Asia and America).  

Across the latitudinal gradient, zonal mean RH values increased from cold or dry areas (e.g. tundra, and desert or semi-arid 

areas) to warm or humid areas (e.g. temperate and tropical areas, Fig. S5). Data-derived RH dataset varied from 60±12 at about 

75oN to 640±71 g C m-2 a-1 at the equator, reflecting less stress from environmental limitations. In the dry tropical areas (10oS 

-25oS and 10oN -25oN) limited by water, zonal mean RH decreased slightly. With the increase of water availability, RH showed 210 

a second peak in the Northern and Southern Hemispheres around 20oN and 40oS, respectively. However, there was a high level 

of variability between data-derived RH and those predicted by TRENDY/Hashimoto RH in equatorial regions (Fig. S5), with 

predictions generally overestimating RH at the equator. Peak RH values in the equatorial region ranged from 660±65g C m-2 

a-1 in previously published estimations, to above 1200±460 g C m-2 a-1 for CLM4 model, resulting in a considerably higher 

peak RH value for the model mean (950±300 g C m-2 a-1).  215 
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3.2 Total RH 

Over the last 37 years, global RH has increased from 55.8 Pg C a-1 (1 Pg = 1×1015 g) in 1992 to 58.3 Pg C a-1 in 2010, with 

an average of 57.2±0.6 Pg C a-1 and strong annual variability (Fig. 4). Compared to the data-derived RH dataset, 

TRENDY/Hashimoto underestimated global RH values (Fig. 6a), with the exception of the VISIT model. ISAM predicted the 

lowest global RH of 34.8±0.4 Pg C a-1, while the VISIT model produced the highest RH of 59.9±0.6 Pg C a-1 (Fig. 5a). The 220 

model mean RH was 47.6±0.5 Pg C a-1, underestimating RH by 9.6 Pg C a-1 (16%) in comparison to data-derived RH dataset. 

Due to this large divergence, the strength of correlation between data-derived RH and TRENDY/Hashimoto RH varied greatly 

from 0.06 to 0.72 (Fig. 5b). Boreal, temperate and tropical regions were the three most important contributors for global RH 

according to the Köppen – Geiger climate classification system (Peel et al., 2007), contributing 76% of the total global RH. 

The mean RH of boreal, temperate and tropical areas were 10.8±0.3, 12.9±0.1 and 19.5±0.2 Pg C a-1, accounting for 19%, 22% 225 

and 35% of total RH, respectively (Fig. S7).  

3.3 Trends in RH 

Globally, although there was a great inter-annual variability in RH, total RH has significantly increased at the rate of 

0.036±0.007 Pg C a-2 from 1980 to 2016 (p = 0.000, Fig. 4). Comparison of data-derived RH dataset and that generated by 

TRENDY models was performed, focusing on the period of 1981 to 2010. Data-derived RH increased at 0.041±0.01 Pg C a-2 230 

(Fig. S6), exhibiting a slower increasing trends of 0.05±0.007 and 0.057±0.009 Pg C a-2 of TRENDY/Hashimoto RH, 

respectively. Additionally, temporal trends varied greatly among TRENDY models (Fig. S6), with the largest increasing trend 

of 0.123±0.013 Pg C a-2 established by LPJ-GUESS and the largest decreasing trend of -0.018±0.007 Pg C a-2 established by 

ISAM.  

Temporal trends varied according to climate zone. RH in boreal and temperate areas increasing by 0.020±0.004 and 235 

0.007±0.002 Pg C a-2 from 1980 to 2016 (p = 0.000, Fig. S7), while RH in tropical areas did not show a significant temporal 

trend, although inter-annual variabilities were observed (p = 0.362, Fig. S7). TRENDY/Hashimoto RHs showed significant 

increasing temporal trends in boreal, temperate and tropical regions, except those estimated by ISAM and ORCHIDEE models 

(Fig. S8-10). However, the magnitude of increase varied among different TRENDY models. 

From 1980 to 2016, global RH was expected to be driven by multiple environmental factors, such as temperature and 240 

precipitation. During this period, MAT and MAP levels increased significantly by 0.34±0.032oC and 6.69±2.399 mm per 

decade, respectively (p < 0.01, Fig’s. S11a and b). Therefore, the correlations between RH and temperature/precipitation were 

evaluated. Globally, RH was significantly correlated with temperature (R2 = 0.56, p = 0.000) and precipitation (R2 = 0.42, p = 

0.000, Fig. 6) anomalies. On average, global RH increased by 1.08±0.163 Pg C a-1 per 1oC increase in MAT and 0.23±0.046 

Pg C a-1 per 10 mm increment in MAP. 245 

3.4 Spatial pattern of RH trends 
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Spatially, data-derived RH trends presented heterogeneous geographical patterns (Fig. 2c). Positively increasing trends in RH 

were found for more than half of the global land areas (59%, calculated from cell areas; Fig. S12). Generally, the increasing 

rates of RH were lower than 3 g C m-2 a-2, in contrast, the highest RH increase was above 6 g C m-2 a-2 in boreal regions, such 

as Russia, North Canada and the Tibetan Plateau. RH exhibited a decreasing trend in 41% of the global land area and most 250 

considerably in South Asia (Fig. 2c). Similar to data-derived RH trends, RH trends estimated by the TRENDY/Hashimoto RH 

trend also showed heterogeneous geographical patterns (Fig. S13). However, large discrepancies were found among 

TRENDY/Hashimoto RH (Fig. 2c and S13). Generally, the largest increase in RH trends occurred in boreal areas, except for 

outputs by LPJ-GUESS and LPJ models, which showed a decreasing trend for most boreal areas. There was a decreasing trend 

across most of tropics (e.g. Southeast Asia), with the exception of VEGAS model results (Fig. S13).  255 

3.5 Dominant factors in RH annual variability 

Annual mean temperature and precipitation were the most important factors dominating RH in 39% and 36% of global land 

area, respectively (Fig. S14). While SWC dominated the remaining 25% of global land area. Spatially, the dominant drivers 

controlling RH varied greatly across the globe (Fig. 2d), with the area dominated by temperature mainly distributed in boreal 

areas above 50oN. This was also observed in the relatively high and positive partial correlation coefficient between temperature 260 

and RH (Fig. S14a). While precipitation dominated temperate areas between 25oN and 50oN (such as North China, the Middle 

East and America), where a wide distribution of desert or semi-arid regions occur, SWC dominated in tropic areas, such the 

Amazon, India and Africa. Similarly, water availability (SWC and precipitation) were also main driving factors for RH in 

Australia.  

Spatial patterns in environmental controls on TRENDY/Hashimoto RH varied greatly compared to data-derived RH dataset 265 

or among TRENDY models (Figs. 2d and S14-16). Water availability (including precipitation and SWC) appeared to be more 

important than temperature. The percentage of the areas dominated by temperature (mainly distributed in boreal areas, except 

for in ISAM model outputs), were less than the areas dominated by precipitation and SWC (globally distributed) (Fig. S16). 

In terms of the modelled mean RH, precipitation dominated in most global land areas (43%), followed by SWC (36%) and 

temperature (21%) (Fig. S14).  270 

4 Discussion 

4.1 Annual RH 

4.1.1 Comparison with Hashimoto RH 

Despite the increasing efforts to quantify the global carbon cycle, large uncertainties still remain in the spatial and temporal 

patterns in RH. To the best of our knowledge, this is the first study to apply the RF approach to predict of temporal and spatial 275 

patterns of global RH using field observations. Globally, mean RH amounted to 57.2±0.6 Pg C a-1 from 1980 to 2016, 6.4 Pg 

C a-1 higher than Hashimoto RH (Hashimoto et al., 2015). This difference may be due to several reasons, Firstly, the two RH 
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products covered different land areas, with data-derived RH dataset in the present study covering a higher land area. If data-

derived RH dataset was masked by Hashimoto RH over 1981-2010, total RH was 51.8±0.6 Pg C a-1, close to that of Hashimoto 

RH with 51.1±0.7 Pg C a-1 (Fig. S17), respectively. However, the temporal and spatial patterns varied greatly (Figs. 3 and 5).  280 

Secondly, the two RH products used different variables and algorithms for RH predictions. RH was not only affected by 

temperature and precipitation, but also by carbon substrates, soil nutrient levels and other variables (Hursh et al., 2017). Besides 

temperature and precipitation, we also included SWC, soil nitrogen and carbon contents as indicators for environmental and 

nutrient constraints on RH. Conversely, Hashimoto RH was estimated from a climate-driven model including only temperature 

and precipitation as the driving variables (Hashimoto et al., 2015). This simple model can partly explain the reasons that 285 

Hashimoto RH could not capture the significant decrease in RH in 1982 and 1991 due to El Chichón and Pinatubo eruptions, 

respectively (Zhu et al., 2016), while data-derived RH dataset and TRENDY RH successfully captured such effects.  

Thirdly, the linear model between total soil respiration and RH was developed based on forest ecosystems (Bond-Lamberty 

et al., 2004; Hashimoto et al., 2015), which could be another uncertainty when applying this linear model to other ecosystems, 

e.g. croplands and grasslands.  290 

4.1.2 Comparison with TRENDY models 

As data-derived RH dataset often serve as a benchmark for global vegetation models, the empirically derived global patterns 

of annual RH was compared with TRENDY model results. Although data-derived RH dataset lied within the model range 

(34.8±0.4 Pg C a-1 for ISAM to 59.9±0.6 Pg C a-1 for VISIT, Fig. 5a), the model mean underestimated RH by 16% compared 

to the data-derived RH dataset. Due to the different temporal trends among TRENDY model outputs and the low spatial 295 

correlation of data-derived RH dataset and TRENDY RH (correlation efficiencies ranging from 0.06 to 0.72, Fig. 6b), 

TRENDY RH clearly have different sensitivities to climate variability. Additionally, the difference in RH magnitude and 

spatial pattern varied considerably, as shown by analysis of absolute distances and cross-correlations. This effect was mostly 

notable in tropical areas in VISIT and CLM4 model outputs (Figs. S3 and S4). This phenomenon may be associated to several 

reasons. Firstly, plant functional types differed among TRENDY models. For example, the VEGAS model included four plant 300 

functional types (Zeng et al., 2005), while the LPJ model defined ten plant functional types (Sitch et al., 2003).  

Secondly, for each set of equations, constant vegetation parameters (e.g. photosynthetic capacity) were applied across time 

and space for most TRENDY models, which may induce an RH bias. Model parameters using short-term observations do not 

account for inter-annual variability of climatic and soil conditions, generating a simplistic representation of RH due to the 

inability to capture the response of RH to new environmental controls in short-term observations.  305 

Thirdly, models that do not consider nitrogen constraint could overestimate the increasing trend of RH, because nitrogen 

limitation was globally observed (LeBauer and Treseder, 2008). This could explain why the CLM4 model with nitrogen control 

produced a much smaller increasing trend compared to other TRENDY models, with the exception of ISAM (Fig. S6). 
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Therefore, including soil nitrogen as a driving variable in modelling RH in this dataset had the advantage to detect the nitrogen 

constrain on RH. 310 

Fourthly, the lacking of the representation of human activities and agricultural management (e.g. fertilization and irrigation) 

may underestimate RH, because fertilization and irrigation were important practices to increase RH (Chen et al., 2018; Zhou 

et al., 2016). This could explain why five of seven TRENDY models could not explain the significant increasing change of 

RH in middle China (Fig. S13), which experienced intensive use of fertilization for food security in recent decades.  

Finally, uncertainties and differences in model structures could also lead to inconclusive RH estimations. Although the same 315 

climatic data, e.g. temperature and precipitation, were used for TRENDY models to reduce the uncertainty causing by various 

meteorological forcing, systematic errors may be caused by applying a particular forcing and the errors might be propagated 

to model outputs (Anav et al., 2015). Therefore, TRENDY models should be improved by incorporating more processes such 

as nutrient constrains and assessment of the model response to environmental variability (Keenan et al., 2012; Wang et al., 

2014; Yao et al., 2018b).  320 

4.2 Linkage to global carbon balance 

If assuming the global ratio of RH/total soil respiration ranged from 0.56 (Hashimoto et al. (2015)) to 0.63 (Bond-Lamberty 

et al. (2018)), annual soil respiration varied from 90.8 to 102.1 Pg C a-1, within the reported values of 83 to 108 Pg C a-1 based 

on recent studies (Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017). This indirectly highlights the reliability of use of 

RF for global RH prediction. Moreover, these findings also have relevance to carbon balance estimations. According to a 325 

recent NPP estimate from observations and IPCC report data (IPCC, 2013; Li et al., 2017), global NPP ranged from 61.5 to 60 

Pg C a-1, respectively. The residual between RH and NPP (net ecosystem production) was 2.8-4.3 Pg C a-1, which is similar to 

global estimates of net ecosystem production from the International Geosphere-Biosphere Programme, which ranged from 1.9 

to 4.1 Pg C a-1 from 1959 to 2016 (Le Quéré et al., 2013; Le Quéré et al., 2016; Le Quéré et al., 2014).  

With a 1oC increase in global MAT, RH will increase by 1.08 Pg C a-1 globally, and it is 0.23 Pg C a-1 for 10 mm increment 330 

in global MAP. These findings indicate that carbon flux from the decomposition of soil organic matter and litter (RH) maybe 

positively feedback to future global climate change -  typically characterized by increasing temperature and alterations in 

precipitation (IPCC, 2013). However, this increment may not compensate for the carbon sink capability of terrestrial 

ecosystems, as the NPP increment per year (0.23 Pg C a-1) was higher than that of RH (Li et al., 2017), suggesting an increased 

carbon sink role for terrestrial ecosystems (Le Quéré et al., 2013). 335 

4.3 Dominant factors in RH 

Dominant factors driving RH varied spatially. As temperature and energy were the most limited climatic factor in high 

latitude areas, temperature was a dominant factor for RH in high latitudinal regions above 50oN (Fig. 2d), with low 

temperatures leading to low RH (Fig. 2a). Similarly, due to the limited amount of precipitation, RH in semi-arid areas was 
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mainly controlled by precipitation, which is consistent with reported both field observations (Bai et al., 2008) and modelling 340 

studies (Gerten et al., 2008). SWC control of RH in tropical areas could be explained by the mechanisms of RH. Excessively 

high SWC can reduce the diffusion of oxygen, while excessively low SWCs could limit water and soluble substrate availability, 

preventing microbial activity (Luo and Zhou, 2006; Xu et al., 2004). Suseela et al. (2012) proposed that RH fluxes declined 

sharply when volumetric soil moisture reduced below ~15% or exceeded ~26%, which supports the findings of the present 

study. However, it should be noted that dominant environmental controls on spatial carbon flux gradients might vary among 345 

different years (Reichstein et al., 2007), such as with climatic extremes. 

4.4 Temporal variability of tropical, temperate and boreal areas 

Temporally, RH in tropical areas did not exhibit a temporal pattern between 1981 and 2010, indicating that the climate 

change did not affect RH fluxes in these areas, negatively feeding back to future climate change. However, RH in boreal and 

temperature areas experienced significant increasing trends of 0.020±0.004 and 0.007±0.002 Pg C a-1, respectively (Fig. S6), 350 

suggesting a positive feedback may occur with future climate change. Tremblay et al. (2018) proposed that increased RH was 

mainly related to increasing temperatures in boreal forest soils, which supports the findings of the present study. It should be 

noted that both data-derived RH dataset and Hashimoto/TRENDY RH in boreal areas showed a temporally increasing trend 

from 1981 to 2010, although the magnitude of increase differed (Fig. S8). Furthermore, despite the ISAM model showing a 

decreasing trend for temperate and tropic regions, the ISAM model had an increasing trend in RH from 1981 to 2010 in boreal 355 

areas (Fig. S8). These results indicate that boreal regions are becoming increasingly important in global carbon cycling and 

that the increasing trend may continue due to the large amount of carbon stored in soil. Therefore, climate change may 

fundamentally alter carbon cycling in boreal areas through changes in the decomposition rate of soil organic matter (Crowther 

et al., 2016; Hashimoto et al., 2015; Schuur et al., 2015). Furthermore, the response of RH to climate variability varied with 

climate zone, indicating different carbon loss rates from RH will occur in different regions to future climate change. 360 

4.5 Advantages, limitations and uncertainties 

Based on the updated SRDB dataset, we used RF algorithm to predict the temporal and spatial patterns of RH at the global 

scale and its response to environmental variables, and empirically derived global patterns of annual RH could serve as a 

benchmark for global vegetation models and reduce RH uncertainties. This developed RH dataset provides several advantages 

to the estimation of global RH. Firstly, we compiled up-to-date field observations from SRDB and Chinese peer-review 365 

literatures up to March 2018, including 504 observations in total covering the majority global terrestrial ecosystems and climate 

zones (Fig. 1). Secondly, total RH and its inter-annual variability were assessed for boreal, temperate and tropical zones –  

three main global climate zones. Analysis from data-derived RH dataset further concludes that RH in different climate zones 

responded differently to global climate change. Thirdly, we applied RF to predict and map RH at the global scale using climate 

and soil predictors. Compared to linear regression analysis for predicting soil respiration (as no such global RH predictions 370 

were previously available for comparison), which has reported model efficiencies of <50% (Bond-Lamberty and Thomson, 
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2010b; Hashimoto et al., 2015; Hursh et al., 2017), RF algorithms achieve a higher model efficiency of 50%, allowing a feature 

selection according the importance value of each variable and avoiding overfitting (Bodesheim et al., 2018; Jian et al., 2018), 

improving RH modelling and reducing uncertainties. Additionally, data-derived RH dataset was cross-validated globally by 

10-fold cross-validation (see “materials and methods” section), which could improve its reliability and feasibility compared to 375 

TRENDY based RH that are not validated and calibrated by field observations, bridging the knowledge gap between local, 

regional and global scales temporally and spatially with a large number of empirical field measurements. 

However, although empirically derived global patterns of annual RH dataset could be used as a benchmark for the 

verification of global carbon cycle modelling, bridging the knowledge-gaps between local, regional and global scales, few 

uncertainties and limitations still remained. Firstly, RF algorithms constructs a model based on training dataset and is typically 380 

data limited in terms of quantity, quality and representativeness. Uneven data distribution has been a known issue in many 

ecological studies across the world, e.g. Bond-Lamberty and Thomson (2010b), Jung et al. (2011) and Yao et al. (2018a). 

Uneven coverage of observations is an important source of uncertainty to develop the data-derived RH dataset, which cause a 

bias of RF model toward the areas with more observations. However, our dataset covered a large climatic and edaphic gradient 

covering the major land covers and climate zones. Therefore, in future studies, increasing field observations in unsampled 385 

areas should greatly improve our ability to evaluate spatial and temporal patterns of RH at the global scale and model global 

carbon cycle to future climate change.  

Secondly, the misrepresentation of human activities, particularly regarding to land management and land use change, could 

result in uncertainties in RH (Bond‐Lamberty et al., 2016; Tang et al., 2016). These human activities include both site-level in 

situ information and the corresponding global grids. Otherwise, such information must not be included as corresponding site 390 

information or respective globally gridded datasets are missing or insufficient. Although soil organic carbon stock, soil nitrogen 

content, SWC and shortwave radiation were selected as inputs for the development of the RF model, which could partly capture 

land use change, the impacts of land use change on inter-annual variability of RH have not been fully qualified in the present 

study. Therefore, further efforts are required to characterize and quantify the effects of land use changes on global RH.  

Thirdly, the developed RH dataset was derived at an annual timescale, which may cause additional uncertainty regarding to 395 

the inter-annual variability of RH. Therefore, the need for a larger number of global observations and to develop finer-scale 

temporal dynamics need further exploration, in combination with remote-sensing measurements and field observations, which 

may provide new insights into terrestrial ecosystem carbon dynamics at the global scale.  

5 Data availability 

The developed globally gridded RH database and field RH observation dataset are publicly free for scientific purpose, which 400 

can be downloaded at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 2019a). R codes to produce the main results 

are also available upon the request to first author or corresponding author.  
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6 Conclusions 

Data-derived global RH dataset may be used as a benchmark for global vegetation models, however, no such study has yet 

been conducted to assess the global variability in RH using a large dataset of empirical measurements to bridge the knowledge 405 

gap between local, regional and global scales. To fill this knowledge gap, we developed a globally gridded RH dataset, which 

was 0.5o × 0.5o from 1980 to 2016 with an annually temporal resolution, using RF algorithm by linking field observations and 

global variables. Robust conclusions include: (1) Annual mean RH was 57.2±0.6 Pg C a-1 between 1980 and 2016, with an 

increasing trend of 0.036±0.007 Pg C a-2, indicating an increase in carbon loss from soil to atmosphere with future climate 

change; (2) Significant temporal trends were observed in the RH in boreal and temperate areas, although none were found in 410 

tropical regions. This indicates that the temporal trend in RH varied with climate zones, highlighting their different sensitivities 

to future climate change; (3) The magnitude and dominant factors in RH results generated by data-derived and TRENDY 

models varied greatly, indicating that future efforts should focus on improving the representation of RH in ecosystem models 

and the ecosystem response to environmental variability; (4) More field observations are required in areas with limited 

observational datasets, with the integration of smaller-scale temporal dynamics (rather than annual timescales) potentially 415 

providing new insight into terrestrial ecosystem carbon dynamics at the global scale; (5) The develop globally gridded RH 

dataset could serve as a benchmark to constrain the global vegetation models, further contributing to improve our 

understanding of the mechanisms of global soil carbon dynamics. 
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TRENDY models, Dai Palmer Drought Severity Index data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 

USA, from their Web site at https://www.esrl.noaa.gov/psd/.  

  435 
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Figure 1. Distribution of the study sites for RH observations. 670 
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Figure 2. Spatial patterns of (a) mean data-derived RH (b) standard deviations, (c) temporal trends of annual heterotrophic 

respiration (RH) from 1980 to 2016, while (d) dominant environmental drivers for the inter-annual variability of global RH. 675 

MAT = mean annual temperature; MAP = mean annual precipitation; SWC = soil water content. 
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Figure 3. Comparing data-derived RH dataset with Hashimoto RH (a, c) and mean RH of TRENDY models (b, d) based on 

absolute distances (g C m-2 a-1, a, b) and cross-correlations (c, d). The absolute distances and cross-correlations were calculated 680 

using comparison map profile method (Gaucherel et al., 2008). 
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Figure 4. Inter-annual changes in global heterotrophic respiration (RH) from 1980 to 2016. The grey area indicates 95% 

confidence intervals. For the linear regression model, R2 = 0.429 and p < 0.01. 685 
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Figure 5. (a) Total global heterotrophic respiration (RH, mean ± standard deviation) fluxes and (b) the correlation coefficient 

analysed by Pearson correlation between data-derived RH and TRENDY /Hashimoto RH. The red dashed line (a) represents 

the average of data-derived RH from 1981 to 2010.  690 
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Figure 6. The relationships between heterotrophic respiration (RH) and mean annual temperature (a) or precipitation 

anomalies (b). The change was calculated as the difference of each given year to the average over 1980 to 2016. Grey areas 

indicate 95% confidence intervals. 695 
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